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!1. ]NTRODUCr JON

An infrared (IR) detection system determines th2

prescnce or abscnce of a target in a particular area of

space by processing the received IR energy from that area.

The target must bc found amid evcr-present background

radiance an 1 any intcrnal noise generated by the detcction

system, in this thesis, one type of systcm, called a

nutat ing optical system, is considerc.d.

Infrarcd detection is a combination of spatial frequcncy

processing and tciporal processing. Spatial frequency process-

fng is a means of achieving a modulated output from the IR

radiance passing into the optical system so that information

may b,.! casily extracted [Ruf. 14]. To extract this inforiaa-

tion, some forrm of temporal processinp is used. In a

I nutating optical system, the optical axis rotates about an

axis perpendicular to the image plane in such a way that a

point image traces out a circle in the image plane. The

spatial frequency filter is a piece of IR sensitive material

in the image plane which produces a voltage output that is

amplified and fed into a temporal filter for processing.

A nutating optical system is frequently used in a missile

seeker because it produces a signal when there is no
tracking error and the rotating optics can be made into a

gyro that provides the inertial reference.

This work is a synthesis and extcnsion of two recently

published article- in the literature. 1h, first, by

F 7



IHarger [Ref. 3], formulates the detection theory of a

known signal in background and white noise. Since in 1R

target detection the signal is never known coiplctcly,

Ilarger's work is extended to the cose whcre the target

amplitude and position a ic unk1own. flowcYeOr , a knoWn

target shape is assumed as well as a priori statistics of

amplitude and position. Since detection is most difficult

whcn the amplitude is small, a tes! (called the threshold

detector) is derived that is opt imtim for weak signals.

To specify the form of the threshold detector and to

calculate it: performancc, an cigpcvalue integral equation

must be solved. Ordinarily, this is a difficult undertaking

but the solution becomes trivial i f th, ccvariancc function

of the background process is periodic. This is exactly

the condition realized for the background process out of

a nutating detector provided that the phase, which is

physically unimportant, is averaged out.

Sainuelsson's results [Ref. 11] specify thie form of the

signal and background coefficients in terms of the system

parameters and signal and background radiance. These

derivations were first published in a Swedish internal

report [Ref. 10], then re-derived in English by Yoshitani

(Ref. 6]. The latter's derivations arc included in the

appendices.

Samuclsson's equations have been applied to a rectangu-

lar IR detector assuming a Wiener spcctrum for the random

background and the coc ffic ienLs h.,vo been calculated.

a '



Using these coefficients, the optiimwu filter ha;.; been .determined a nd the p robabilIIit), of detection conmptcd as i

a function of signail-to-noisc ratios and backgvound-to-

noisc ratios.

Ir
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I I. SPATI A!. I'}ICF S S I NG

The spatial frequency filtering portion of the detection

"system is comprised of a lens system and an IR sensitive

cletecto, located in t c. image plane, the focal plane

of the optics. To adequately derive information

from the IR radiation, the ].ens sy.tem and detector must

be of a nature that causes the voltage output to be modulated

in a way that information about a taiget within the field

of view can be processed. In a practical nutating optical

systcm, the lens system moves and the detector is stationary.

However, for conceptual purposes, this is equivalent to a

stationary lens systen and nutating detector.

A, TARGET SPECTRUM

The object to be detected, the target, is located

in the object plane a distance R from the lens and parallel

to the image plane as shown in Figure 1.1. The angle fro-

the perpendicular axis connecting the pla:nes to the target

ceordinates measured in the x-direction is called x and is

measured in mi]liradians; the angle in the y-diiection isi
y. The target is considered to be close to the optical

axis and at a sufficient distance, R, such that small angle

approximations may be made,

x tan x
.- y (2. )

10i
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Consider a target with a radiance distribution

N(r) (W/cm 2 -sr) which is the radiani power into a unit solid

angle per unit projected area of the sources. r =r(x,y) is

a vector whose origin is the perpendicular axis connecting

the coordinates.

Assuming no atmospheric attenuation (this can bc

included in N(r) if it exists) and perfect optics, the power

distribution in the image plane is

P Pi(r) - N(r) % (,,/sr) (2.2)

where A0 is tne effective entrance area of the optics.

Dividing by A0 , one can see that the radiaince

distribution in the image plane is numerically equal to the

radiance distrihltion in the object plane.
However, because the optics is not perfect, a

point object given by

Hlp 5 (r) Hp 5 (x) 6((y? (w) , (2.3)

(where lip (Wcm 2 is the irradiance at the optics received

from the point source) is imaged as a power distribution

2
Hp • fo(r) (W/cm Sr) (2.4)

where f 0 (r) (sr") is the point spread function of the

optics. Irradiance is defined as the radiant flux indicent

on a surface of unit area [Ref. 51.

Therefore, the radiance distribution, N(r), in the

object plane will be imaged as

N'( f) : N(r-s) fo(s) d's (1'/cri2Sr) (2.5)

12
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where d 2 s - dxdy and the integration is over the entire

image plane.

The detector is a space filter in the image plane

which may be a moving retical or simply an apert,.-re across

which the power is integrated.

The power in the Image plane incident on the detec-

tor is

Ii - N' (r) T(r) d' r (;N'/cmc ) (2.6)

t where t(r) r- (xy) is the transmittance of the detector.

When the detcctoi moves as a function of time, the

power incident on the decector becomes ;o function of time,

_ t) d2  (W/cm2) (2 7)

whe:e p(t) describes the movement of the detector in the

image plane.

A nutating detector roves circularly in the image

plane but its orientation remains fixed, i.e., the coordin te

system (x' ,y') shown in Fig. 1.2 does not rotate. The nut.-

tion rad.us measured with respect to the optical axis is

given by p.

Assuming a nutating optics and no relative motion

between the target and the optics, the radiance on the

detector will be periodic and thus can be expanded in a

Fourier series

M j n wot

H(t) E• H n 0  0 < t < T (2.8)

13



where

1l1 T 1(t) 0 dt
0

ReFlacing 11(t) by equation (2.7),

Hn T dt e d 2r N'(r) (r-p(t)) (2.9)
0

The motion describing function, o(t), for circular

nutation is

p(t) = p(coswoot, sin wot) , (2.10)

where coo 2r/'F (rad/sec) is the radian frequency of nutation

and T is the period for one nutation.

Substituting (2.10) in (2.9), If can be shown (see

Appendix A) to be

Fin fn fN(k) *(k) erIn( J (2 N d +k (211)~ ~nx y -

,.Circular Nutation Path

y Spatial Fre-
quency Filter

(detector)

/ I MAGE origin of .X_
space filter_ "
coordinatesoriinof

origin o nutation radius
image plane

- coordinates x

Figure 1.2. Circular Nutation in the Image Plane.
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where k = (k, ky ), two-dimensional spacial Fourier

transform coordinates [Rcf. 8],

N' (k) - transform of radiance distribution in the

image plane,

T*(R) - complex conjugate of the transform of the

optical transmittance function in the detector

coordinate system,

0 - tan-' ky/kx9

p - nutation radius,

and J (z) is the nth order Bessel function of the first

kind. It has been assumed that the image plane is very

large compared to the radiance distribution from a target

so that the imace plane may be considered infinite for

mathematical pur'poses.

B. CORRELATION OF BACKGROUND NCISL

The background power incident on the detector is from

a sample background scene where a scene is a two-dimensional

random process characterized by the radius vector r = (x,y)

from the optical axis.

Let N(r) be a sample scene radiance distribution on the

object plane from an ensemble of scenes which has been given a

suitable probability" structure. The background power incident

on the detector is
12

B(t) - f N'(r) T(r-p(t)) (1 r (2.12)

The covariar.ce function is defined by taking the expected

j value



= -- -- - --

E([B(t)} -E(B(t) ([B(u) - B(u)}] RB(t,u) (2.13)

wheic E denotes the expectation over the ensemble of scenes.

Because the detector is nutating, the randem process, 13(t),

will not be stationzry. However, if the detectcr and

background do not move with respect to each other, then

RB(tlt2) is doubly periodic:

RB(t M I +T, t2 + NT) - RB(tl,t 2 ) (2.14)

where ',i i,,l N are integers.

It can be shown [Ref. 7] that the form of the covari-

ance of a doubl' period process is

R t JmWot I c-jnwot2
RB(tl,t..) o E m jmr' e e •lo (2.15) .=

B nn

Because the nutation is periodic, over the ensemble of

scenes, there is little significance in the starting time t.

Therefore, considering t as a random variable that is

uniform over tho nutation period, one can "average it out" i

of tie covariance function as

ITRB(-') ! T 0 R B(t+-r t) dt (2.16)._

Substituting (2.16) in (2.15),

C 1o 1 T j (m-n),%ot

RB( i) ' mn e T 1 e dt. (2.17)
m T1 0

16



Using the relation

1T j (u-V)wot6uv " rf e dt (2.18)

0

the correlation function bccomes

RB (-) - e (2.19)
n

Equation (2.19) shows that B(t) can be considered a

wide sense stationary process and that it is periodic in

the mean square sense; i e.,

Ru(-) - RB(T+i) for an)' T (2.20)

The power spectral density is the temporal Fourier

trans;form of RB(t). Taking che transform one has

S ( W ) a , rs n , ( • n , ) . ( 2 . 2 1 )
n

The coefficients, 8 can be related to the optical

system parameters by

n fli(-k)l 2 IFo(k) 12 W B(k) jn2 ( ZTT PVý ) d 2k (2. 22)

where FW(k) is the transform o, the point spread function,

and WB(k)~ is the Wiener spectrum, the transform cf the back-

ground correlation function. This derivation was first mad-

by Samuclsson [Ref. 101 in an internal Swedish report then

again by Yoshitani [Ref. G]. Yoshanti's derivation has

been included as Appendix B.

17



Equation (2. 19) implies that the background, B (t), can

be rcprescentcd by a Fourier series with uncorrelated

cocfficients [Ref. 7). Thus

C j)nWot

B(t) - E b (2.23)
n

where the convergence is in the mean square sense.

The coefficients, b n satisfy

E(B(t) n 0
E(bn) = (2.24)

Morcover, they arc uncorrclatcd
>1

IBn m *n
1 (b b ) b (2.25)

0 M• n

C. WItTE NOISE CO,-.ONENT

In an actual system there will be a certain amount of

internal noise generated in the dctector and preamplifier

which is additive to aTiy Lackground noise or signal. In

the frequencies of interest the primary source of this

noise is thermal agitation. This type of noise, called

Johnson noise, is assumed to be white and Gaussian.

Let W(t) be Gaussian white noise with power spectral

density N (%2/ll ) . The power spectrum at the output of the7 z

preanip with bandwidth B is shown in Figure 1.3.

lR i



Mag.
(V/)I:)

N12

-B Frequency

Figure 1.3. Power Spectrum of White Noise.

Ihe RMS voltage measured at the output of the preamp is

N , I
'Vrms -T 2B NB (V) (2.2 )

19



III. TEMPORAL P1ROC:SS INC

The output voltage from the detector is temporally pro-

cessed to determine the presence of a target. The type of

processor is determined by applying statistical detection

theory to the known beha\ *or of the nutating system and var-

ious realistic assumptions about the system and the target.

An optimum processor in the sensc of small signal amplitudes,

called a threshold dctcctor, is developed in this section.

Hlarger [Rcf. 3] dcrived the detection theory for the

known signal ca3e in the presence of additive background and

white noise components. In IR detection, the target ampli-

tude and position are usually not known completely. The

threshold detector is an extension of Margers \.orIk which

accounts for the unknowrn amplitude and position.

The form of the optimal detector under the Neyman-Pearson

criterion will be derived for multiple observations. It i-

assumed that the image plaie and object plane remain parallel id

stationary with respect to each other during the observati ns.

The detection of the target under the Ney'man-Pearson

criterion becomes a problem of hypothesis testing. The

task of the detector is one of choosing between two

hypotheses, H1 that only noise is present and H1 that in

addition to the noise there is a target present. The design

of the detector is one that permits the correct choice of

hypothesis Ill (a dettion) with maximum probability of

detection, Qd, in a fixed probability, QFA' of choosing

20
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11 when H0 is true (a false alarm). The structure of the

Neyman-i'carson criterion rcquires forming a likelihood ratio,

A1 O, which is compared to a known threshold, Vt, specified

for a given false alarm probability. If the likelihood

ratio exceeds the threshold, hypothesis H1 is assumed true

and if not, hypothesis H0 is assumed true. The logic process

may be written

H
A >

10 <V (3.1)

where the threshold, Vt, is ýrived from the expression

SQFA f p(Z111i) dZ (3.2) :

VtI

and Z is a sufficient statistic of the received data,

A. DETECTION OF A KNOWN SIGNAL

The data for processing is a sct of M functions of time

{Zn(t), n=Z,...,M} where each function is the output of the

preamp during one nutation (0,T). T is the nutation period.

The output may be represented as

Z n(t) - S n(t) + B(t) +N n(t); 0 <t<T, n-l,...,M (3.3)

Sn(t) represents the output due to a target. The component,

B(t), represents an additive background and is a sample

function of a random field (B). The relative size of the

target in the field of view is assumed sufficiently small

that the backgrouiid is additive while B(t) is assumed to be

] -. 21



the sample function during i.ach of the M nututions observed.

Nn (t) represents the additive noise component due to the

internal noise of the detcctor-preamp combination. it is a

sample function of a white Gaussian random process (N n) of

zero mean and power spectral density N/2(%' 2/ Z) .

The two hypotheses for the likelihood ratio may be

written as

H 1 : 1 ( Z n ( t ) n ( t + B ) + Nn t ) ; n -(, . . . , M )

(3.4)

H : {Zn ( t -t B (t ) + Nn (t ) ; n1 l,...,M

Denote the likelihood ratio as A1 0 ((Z n)) wherc the like-

lihood ratio is defined as

p ( f Z n } ! If )
A 1 0 ( { Z n }) " p -U Z n I II O ) 

( 3 . 5 ) -

The likelihood ratio is complicated by the fact : and

Zm are not independent because of a common noise component

B(t). To simplify the derivation Harger introduced an

auxillary hypothesis

H ' : { Z N ; n - l , . ,., M }. ( 3 . 6 )
16 .n n

Then the likelihood ratio, A10 , can be computed using

the chain rule for likelihood ratios:

p P ( { Z n } i11 ) P ({ Z n } I tti ) / P ( { Z nl I 2 )
1 0  P ({Z n [1 0) ' (P C' Zn 1 o0)/1(' Znl '71-)

A A12/1A022

22



If the sample functions for the background, B, were non-
random, Z.(t) and Z (t), i / j, would be mutually indepen- I
dent because of white noise. Accordingly, if B were fixed, .

one can write the conditional li]eclihood for the nth

observation A12 ({ZnIB),. Moreover, the likelihood ratio

for M observations would be the product of the likelihood

ratios for each single observation,

M

A 1 2 ((_ }I() - 1 B12 (Z.IB)I

The conditioning is then removed by averaging over the

ensemble of backgrounds

^12 {7~ = EB_, 2,, (C_.}IB) ]

Since the noise is white Gaussian, the conditional

likelihood ratio is that for detecting a known signal

S +B in white Gaussian noise and has the well known form
n n

((Ref. 12 1, page 2,53)

n 2• Ml
AI12 (1 In} B) C xp nEl O n(t) (Sn (t) + B(t)) dt

Nn'-l 01 M T ],
-n iE I0 CSn(t) + B(t))" dt, _

which may be rewritten as

n ({}IB) e 1p4 2 f Z1' )
An -H Z (t) S (t) dt1l2({n N n=1 0 n n

M T 2
F (t) dt exp ((b) (3.14)

N n 0l 0 n

23
I ,



whexo

2M T fTB

a((Z (t) + S (t)Bt)dt B 0 (t)dt. (3.15)
11=3 0 nn0

To iind A1 0 ({Z }j, one must evaluate EB[An, 2 ({Zn)IB)j

where

M T
EB[A 1 2 ({Zn lP)] = exp {'9 f Z (t) Sn(t) dt

n=1 0

(3.16)

M1 T --

E f S E(t)dt} {exp a(b)}.
n-1B

n=1 0 n"E •

Assurm:1ig the background is Gaussian the expectation can be

evaluated by r presenting the background in a Karhunen-

Loeve (K-L) expansion

B(t) - E bk ek(t) , 0 < t < T (3.17)
k

where ek(t) is thc eigenf nction coricspcndipg to eigenvalue

Ak of the homogeneous integral equation

T

kfk = R (t,u) ek(u)du , 0 < t < T. (3.18)
0

R RB(t,u) is the ccvari;nce function of background

RB(t,u) ( [B t) (t) Bt ] [I(uu) -)] } (3.19)

wherc m (t) is the mean of the background.

2?*



Then EB(expaL(b)) can be calculated in n straight~crward

manner. After th. lengthy calculation shown in Appendix C

In E (exp a(b)} = -I + 0

B k

T M T M
+•f dt (Z-n (t) - Sn (t)) f du E (Zm (U)-Sm (u)lq(t,u)

0 n=l 0 m=l

TMf- dt {mB(t) E.l (z (t)-Sn M ))} h(t) (3.20)

0 ii=I

where q(t,u) satisfies the integral equation

TN
*2 q(t,u) + I RB(t,t)q(t,u)rlT = RB(t,u) 0 < u, t < T (3.21)

0

and h(t) satisties 1

TNP h(t) + f RB(t,m)h( )dx =o(t) 0 < t < T. (3.22)
0 B

q(t,u) is the impulse response of the filter that gives

the minimum mean square error estimate B of the backgroun,

when the mean i3 zero [Ref. 15]. The additive white noise

is reduced in amplitude by l/M. Using the K-L representa-

tion, one can also write

q(t,u) = (u) 0 < u, t < T (3.2-3)k N - -
k + A k

Using equations (2.9 , (3.10), (3,141) and (3.20) Zind

-25)
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observing that

A0 2 ({Zn}) - A1 2 ({Zn})ISn - 0 (3.24)

it can be shown (see Appendix C) that the likelihood function

for hypotheses H1 and t10 is

M T
_A0 ({Zn}) exp { Z f Zn (t)qnl(t)dt + K') (3.25)

where

T M
qn(t) S LSn(t) I f Z S (u)q(t,u)du] (3.25a)

0 L=l

and

K 1 M T 21TT N1 M (t,[
S- S(t)d + ff E E S (t)S~(u)q(tu)dtdu

n=l 0 00n=1i. Z nl

2 M T'
- 2 f S n (t)h(t)dt (3.25b)

n=l 0

The logarithm is a monotonic function. Thus it offers

no loss of information but greatly simplifies the calcula-

tions. In the remaining work

A't0 ({0n}) = in A,, ({Z•n) (3.26)

Rewriting equation (3.25),

A' 1 0 ((Z}) L ((Zn) + K' (3.27)

wherc
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N1 T I
L( Zn E f z n (t)q (t)dtn-i 0n

K' does not depend on the input data so it may be included

in the threshold. The hypotheseo, test now becomes

H1

L( Zr ) > Threshold (3.28)

10

It is also possible, as Hlarger has shown, to derive

tests similar to (3.28) without making the Gaussian back-

ground assumption. In particular, if the background fluctu-

ates many times over (0, T) such that a(b) co (3.15) is

approximately Gaussian, then the test is

M T
E f Z (t)g (t)dt > Threshold (3.29)

n=1 0 n H

where

1 2M T 1 IM2f R 1tu : S (u]]du]
gn(t) . (Sn(t) - W RB(t u) [B :IM(u----

0 212C~

Since by Mercer's theorem
00r

RB(t,u) - z X k (t) ý*(u), 0 < t, u < T (3.30)
k

on comparing qno gn and (3.21), it is seen that the above•I
model approaches the Gaussian model if
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N >> max
k

The above condition, which implies a weak background, is

sufficient but by no means necessary. The t•,o models

approximate each other whenever the second term of q and

gn are nearly identical. The point is that while the

Gaussian background assumption may not fit the reality,

a processor based on the assumption is probably not far

from being the optimum. Also, the Gaussian assunptio, allows

one to compute the processor performance.

B. DETECTION OF SIGNAL WITH! UNKNOWN PARAMETERS

The likelihood ratio derived in section A is applicable

only if the signal is known completely. Such is seldoimi the

case in IR target detection and in general the signal is a

function of some unknown parameters. Typically, the ampli-

tude, a,of the target and its position ro in the image plane
0

} are the unknown parameters, and the form of the signal can

be rewritten to include these parameters:

Sn a S n(t;a, ITo0

Furthermore, by assuming that only point targets are of

interest and including the assumption of fixed image and

object planes over the number of nu'ations of interest,

the shape of the waveform will be the same during each

nutation. However, the amplitude is allowed to vary between

successive nutations.
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The signal wvveform may now be written as

Sn (t;a,r*) - an f(tro) (3. 31)

where a is the signal amplitude and f(t,* ) is thiD signal

shape for a target at r',.

Rewriting hypothesis H under these assumptions

gives

H 1 : (Zn (t) a nf(t,• 0 B(t) + Nn (t); n=l,...,M

0 < t < TI (3.32)

The likelihood ratio A1 0 becomes the conditional

likelihood ratio Aio({Zn}Ila, o) obtained by replacing

Snrt) by fn -0) everywhere in (3. .

Assuming a priori statistical knowledge of a and Tof

and their independence, the likelihood ratio may be

averaged over the respective density functions to produce

an unconditional likelihood ratio

Ai 0 ((Zn}) f fJ Z ,.({znpa, (a)p(a)P0 ))dad~r. (3.33)

Instead of averaging as above, one could estimate a and r0

by the maximum likelihood procedure and substitute the
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estimated values a and r in the conditional likelihood
- 0

ratio and try to maximize the generalized likelihood ratio

Ao10 ((Z11 Ia,•.0 However, this procedure is not followed

here because the maximum likelihood estimates are difficult

to obtain.

Since the main interest is in detection of the weak

target, the small signal case is of primary interest.

Expanding Al 0 ({Zn~)a,ro) in powers of signal amplitudes

M

Al0({Zn.lasr 0 1 + E a A j({Zn}laro)I..Ona a (3.34) '~

IM M a2
+ E E a a A

T r nal l k aa-n hlO 1({Zn)lal 0) Ia=O
n-i kkI "

Integrating (3,34) as in (3.33) term by term and

retaining only the first non-zero term that depends on the

data provides a statistic which is optimum for weak signals

and is called a threshold detector [Ref. 4].

The evaluation is made easier by the fact

Ao({Z}1ar - y~k in AO(Z a}ja )j (3.35)"1kn) a0 5k 1 n' a-0

which results from

A((Zn} o, 0T) -
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The first non-zero term becomes

2 T
S1n 0 a0 2• Zn(t)f(t0)dt

'a1n A 10 ({Z n}Ia~r0 )I a-0 t

2 T T
z n (t)dt I q(t,u)f(u,r 0 )du

0 0

- f(t,r 0 )h(t)dt
0

Performing the integration over ro,

2 M T T
1 + E a f Z (t) [f(t) - I q(tu) f(u)du]

n=1 n 0 n 0 (t_

T--f f(t) h(t) dt (3.37)

0

where the bar denotes the averaged quantities. The first

and last terms are independent of the data and may be

included in the threshold value. Moreover, if the ampli-

tuides are ident-caliy distributed, as is generally the case,

the threshold detector performs the test

NIH I
W - I f Z (t) q(t) dt > W (3.38)ni-l 0 n< t'-

H0

where Wt is the threshold and

2 T
q(t) = [f(l) - . q(t,u) f(a.i) du] (3.39)0
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Thus the threshold detector can bo mechanized either as a

correlator or matched filter followed by an accumulator.

The filter function q(t) may be represented in a series

expansion in terms of the eigenfunctions of RB(tu) and the

coefficients of the signal expansion. Expanding f(t) in

terms of the eigenfunctions:

f Et) - fkok(t) . (3.40)
k

Substituting (3,40) in (3.39) and using (3.23)

q(t) N ' k(t) (3.41)

k k

C. EVALUATION OF PERFORMANCE

The Gaussian assumption was made in deriving the

threshold statistic; therefore, the threshold statistic

itself is Gaussian. This means that the probability of

detection, Qd, and probability of false alarm, QFA, arc

uniquely determined by second-order statistics, e.g.,

the means and variances of W under hypotheses H0 and H1 .

Recall that the threshold statistic is

M T
W - X f Z (t) q(t) dt. (3.42)

n-l a n

The means and variances of W are:
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M T

E(WJI! 0 ) -r f j(t) E(B(t) + Nn (t).dt
n-1 0

M T
E r f 4(t) mB (t) dt

M T
E (WIV ) 1 E I ý(t) E[an f(t,r0) + B(t) + Nm Ct)] dt

n-l 0

M T_
- I.(W Ho) 0 + I f(t) q(t) dt

n-i 0

VAR (.W1i1) - VAR (wiJ1). = VAR

N T T 2i T d '",--
/ . (t) dt + M2 . j) / .0u) sB(t,u) du,'i 00 0

0(3.43)

Letting pw (.lHi) be the Gaussian density function of

W under Hi which is specified by the equations above, then

1W

QFA pPw(xlHo)dx (3.44)
Wt

and

Qd a I Pw(xlHl)dx (3.45)Wt
wt

where Wt is the threshold voltage.

Equations (3.43) and (3.44) can be solved to yield
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QA cN(x) (3.46)

and

Qd " ý,(x'd) (3.47)

where

Wt- E[WIHo]
X 

t

d is the equivalent signal-to-noise ratio

E(WjH 1 1
d -

M T_
E a I f(t) q(t) dt

n-1 n 0 (3.48)

IN. T;M T_ T
42(lt) dt + /2 f q(t) f q(u) RB(t,u) dudt

0 0 0

and C (g) is the complementary error function of the kind

• 2/2

Od(g) e dv (3.49)

By setting a desired probability of false alarm, x

may be determined from equatiorl (3.46). The probability

of detection is then determined by solving for d and using

equation (3.47).

By substituting (3.41) and (3.42), and using (3.23),

the numerator of d is
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M T M _ 2

E a nI f (t)q(t) dt *E E Nf~ (3. 50a)
n-l 0 n-i6 k + A k

while the denominator of d (see Appendix D) is

- N (3. SOb)

Thereforc the effective signal-to-noise ratio is

Mý 2M*-[d n7 k 1 + -7 k

Knowledge of d along with (3.46) and (3.A7) completely

specifies the performance of the threshold detector.

The equivalent signal-to-noise ratio for a target whose

amplitude and position are known is easily shown to be

1M [1 hk•)2 I ]
"d - E an 2M-- I f ro_1 (3. 2)

M n- k *k 0kJ

By letting the background be zero it will now be shown

that d' reduces to the equivalent signal-to-noise ratio for

a known signal in white Gaussian noise which is well known

(Ref. 4].

The energy dissipated during one observation in a resi•-

tor of 1 ohm if the signal anf(t,ro) is the voltage across

that resistor is
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• n" k( / Co)k~t) (r .(•)ý*(t)dt
nok

a an F f3 k( r
k

The voltage resulting from M observations then is

S1• VE KM a Ifk(ro) .(3.54)
n-i kn'i [ kI

Substituting (37.54) in (3.52) with Ak -1

d* ,E "2M 12E vNI ,

which shows the familiar result that dctectability depends

only lipon the signal cncrgy and thie signal-to-noise ratio

increases as the square root of the number of observations.
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IV. THRI:SHOLD DFTIC.TOR FrUn NIUTATINC; SYSTE,

In an infrared detection system the output voltage to

be processed is obtained from a detector-preamplifier com-

bination. The irradiance on the detector in W/cm2 is con-

verted to volts with a linear scale factor. The voltage

output can be written as

v (t, o) - K11(t, O) (4.1)

where 1(t,• 0 ) is the irradiance on the detector from a target

-~ 2at position T0 ' and K is P. scale factor in (V/W/cmr). Also

the covariance function may he written a.s

RvB(T) EtKB (t+ ) KB(t ) K'RB(t 2 , (4.2

where BRt) is the irradiance on the detector due to a partic-

ular background scene. The output voltage due to this scene

is

v 13 KB(t) (4.3)

The problem now is to relate the detectoi-preamplifier-

output to the equations derived for the threshold detector,

It was shown in Part III that an optimum processor for

weak signals was a threshold detcctor that performed a

certain linear operation on the data. The linear filter was I
spLcified in terms of the eigenvalues and eigenfunction, of

the integral equation (3.1P'), where the lzcrnal R (t u) is

the covariance function for the hackgrounC.
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in Part N1, the rovariance function was noted to be

periodic. Re,;riting (4.2) in terms of the output voltage

j'k J o(t -1)

RvB (tu) 2 E ik e (4.4)Ii k

Saostituting (4.;), into integral equation (3.18), the solu-

tion for th-e eigenvalues and eigenfunctions is trivial with

j k ', °0 t -
ýk (t) -

and

S2 T (4 5)

where T is the nutation period.

"1he signal coeffici,'nti w ciu also rotc'd to be pcriodic-

and could be expanded in a Fourier series

Sjkw t

0i
v(t) = K X FWk(roe (4.

k

..ccognizing the 3imilarity bet•,en equations (4.6) and (3. 1),

the signal coefficient- for a known signal which is expanded

using the basis set above become

fk( o K11 ( o) - (4.7)

For the threshold detector, thc signal is averaged with

respect to an a priori densitv function for }0" Averaging

can be done with the coefficients to give

• .. _ .- .• .. .• , m • t I •3 8



kk ' p (ro fk (I'o)d r0

V, x KvT f ik ro '~o) d' (4. F)

"" VKT Pk

Using equation (2.10), the coefficients Ik can be written

as

1n 1To[k72 J)2 k (4_.9)
J dop CI '0nx

The transform of the radiance distribution from a target,

N'(k,ý ) is a function of the target radiance, Pk), the
C

position of the target, To' and the point spread function of

the optics, Fo(k). Rewriting (.1 9),0

nk = fd 2 kR(k) t rk) J n 2• k2ýj4 j"in
, "~ ~ "~x y

-*-

d "e 20 k'-r (4.10)I~~ dr P(- )e ~"

If the density function, p(ro), is assumed Gaussian with a

staiidard deviation po0 then the averaged coefficients beccmne

k Tk* kk) - i n ( 2-\ k:&+kf d k. (4 .11)

ik = fnR(k)e_ >' ke n " "-

The Gaussian assumption on r is reasonable because r 0

often iepresents a pointing error from some designated tar-

gct position. Then p0 describes the accuracy of the pointing

mechanism. Substituting (4.8) into (3.42), the filter func-

tion for the threshold detector becomes

q(t) = K E 1 k f ) (4.12)
k 1 + .N K
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Rewriting the equivalent rignal-to-noise ratio in terms

of equations (4.8) and (4.12) one has

M - 1
d -, o - .k E 111,1 (4.13)

_ 1

It will be shown in Part V that k may be reprcsented as

F. k B Q2 2 Qk

where GF2 is the amplitude of tbc backgiound noise corolea-

tion functioa, a22 is the instantaneous field-of-view of the

detector and Qk is an integral function of the optical and

detector paraineteýrs and correlation length of the background

radiance.

Defnc thc fcllci.'i ng terro:
M

1 E an

Signal-to-noise ratio (SNk) n (414a)

0 PKvT
Bac1kground-to-noise ratio (BNR) (4.14b)

VN/2

Using (4.14a) and (4.14b), d may be rewritten as

r 2 1
d SNR V7M I -2k! (4.15)

k1 * MQkPNR"J

Noise equivalent irradiance (NFf) ma'7 he defined at the

detector-preamplifier output to be
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K-NEI 2B7 AW ' (4.16)

where B is the detector-preamplifier bandwidth.

The SNR and BNR may now he written in terms oi the NFI as

VY SNR N a I SNRNE I

where YTB is number-time-bandwidth product and

, ' BNR -,lB VSTF - PYR' /17"fr.

Expressing d in tcrms of NEI one has

SNR E II 1
k 1 Q N R' (4.17) N
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V. SOLUTION FOR RfCT•ANCILAP DFTFCTOPR

The equations in Part II for the detector-preamplifier

output voltage and the correlation function of the backg'vound

must be solved to obtain the filter function and specify the

detection system performance.

The two gcneral equations obtained in Part II are

n a -jr .k -inH n (r0) - R k)e F 0ok•(~

where t1n(To) is the nth Fourier series coefficient for the

radiation on the spatial filter and

fn-(k)~ 8FV(,)K " (k) J12no k y x dk

where B is the nth coefficient of the background correlationn

function at the spatial filter.

A rectangular shaped detector was chosen for the calcu-

latioris because it exhibited the simplest form of the

equations. For circular nutation the filter is rcpresented

graphically in Figure 5.1.
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Figure 5.1. Nutation with. Rectangular Detector.

If the detector function is given by

x Q- XW12 <. x' < xo0+w12

,)Yo-h/2 y' < Yo+h/2It(x' ,y')

0 otherwise

then its transform is

-j2r(k x kv Y)S e x

r(kx,ky) - sin (,rkxw.sin (7k h)
XY Trk k y

x y

so that
it2 2 •kh

2 sin2 (rk xw) sin-(1k h)

Tr k2I (5.1)

"x y

The point spread function of the optics is assumed to

be Gaussian:
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12
rn

f (r) e - 2 e
2'mo

Its transform is

.27TT2a2 (k2 +k 2
F0 (k) - C x Y) (S.2)

The correlation of the background radiance is assimed to

be of the form

2 - Ix I-81C lI (S 3a)
B ~x,) B CB

-1 -1

where a and P are the correlation lengths in the x- and

y- directions, respectively. The Wiener spectrum is the

Fourier transform of

2 2a 28
CA + ( 2 11k x) x + ( 2U k y I

Substituting (5.1), (5..) and (5.3b) into (2.10), thc

radiance from a point target becomnes

f-J 2 (k r +k -r ) -2-oT (kxk- )n (eo3 7 x e

SC x x0+k yYO sinrkxw s inkyh
•e•x •y

-in tan"1 (ky/k 2
e Jn 1_x *k dXdy. 5."

Letting

ux =/7ak

yy
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equation (5.4) becomes

- u2+U 2)Hn(r 0)- Cf x y

- [( r X-x0)Ux+ry Y YO)Uy

-jn tan- Ux 1C- )xJ 1 duxdu., (5.5)

If ro is random, the radiance from a target may be

averaged with respect to the density function p(r ) as shown

in Part IV. in particular, if -*o is Gaussian distributed,

with standard deviation p0 the averaged coefficients become

2 2 2 2
- -2 T y (ky+k) 2J2TT(k 2 2 ++kyyo)F n " n fe

sin4, snrl h -jn tan-l(ky/lkx

sn /kxW + )n kv, (5.6)

where

2 2 2
Y " p *o .

Letting

U;' - /Ty k y

equation (5.6) becomes
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'2 '2 -'Z

x n -!u' x +u'y ) -jn tan- (u•/"u
"CU e ey

, j Y
And finally substituting equations (5.1), (5.2) and

(S.3b) into equation (2.22), the correlation coefficients

become

2 .2 2 2 2
S 4 akx k y) sinn (irk wxw) sin2(rk h)

x

" 2 -2 aky 2
B (21Trk ) 2 + (2 TT~ 'K n l Y -Y

u"' 2rrpkx

y y

equation (5.8) bccomes

22w 2 2
OBn C-r• '•(in a uYOn " 1 2 -Cw- Ul,, UPI

whc rc
f2 = w2h 2  (5.9)
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The integrals in (5.5), (5.7) and (S.9) were difficult

to evaluate. Although the components of the intcgrand are

relatively simple functions, the argument of the Bessel

function prohibited separating the integral into two one-

dimensional integrals. No closed form solutions were found

so the integrals were evaluated numerically. The numerical

method used is based on work by Pierce [9] who applied

Gaussian quadrature formulas to two dimensional integration

by integrating over a planar annulus in the (x,y) plane.

Gaussian quadrature formulas are a means of evaluating

the integral by summing weighted values of the integrand at

specific points. For the one dimensional case,

h b
f g(x)dx - f w(x)f(x)dx
a a

where g(x) is the integrand to be integrated and w(x) is a

weight function for which the specific integration was

derived. For well behaved fun:tions tKe integral may be

evaluated as

b m
f g(x)dx , A f(xi) + error (5.11)
a ji- 1

where the xi's are the m zeros of the mth polynomial

mP I (x) - 1 (X-xi)

of the set of polynomials mutually orthogonal on the inter-

val ta,b] with respect to the weight function w(x). The

weights are given by
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b
Ai - £ w(x) L,.(x)dx (5.13)

a

where L1 (X) Pm (x)/I(x-xt)Pý(xi)1 is th- Lagrange inter-

polation coefficient.

Por a weight function w(x) and interval (a,b) the poly-

nomial Pm(x) and its zeros xi and weight factors Ai need be

computed only once. For a number of weight functions and

intervals the set of orthogonal polynomials is known. Stroud

and Secrest [13] give xi's and A.'s for a variety of weight

functions and internals. The degree of the formula deter-

mines the number of xi's and Ai 's. A 2M-l degree formula

will have M points and is exact for polynomial integrands of

e4PC'rpt 7XI-I or less.,

Pierce applied Gaussian quadrature integration to two

dimensions where the solution is of the form

ffg (x ,y) dxd l E D g ,.(x iii 22xij j:

The integration is over an annulus in the x,y plane with

inner radius R and outer radius 1. Rewriting the integral

in polar coordinatesk 1 21T
f o rG(r, )d~dr t Z E D..jG(r.,ei) (5.14)

R o i j 1

Pierce showed the summation could be rewritten as

4(m+l) m+l
I AiB.G(r. cosej,ri sinO.) (5.15)
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where Ai and Bj iirc the weights for the radial and angular

directions respectively ard 4M+3 is the degree of accuracy.

For an arbitrary annulus the formula may be obtained by

rewriting equation (5.14)

2 r r 2
I - / f f(r,O) rdrd0 (S.16)

0 r

and letting

r

r2

r r 2 f pfcr1e) dodO. (5.17)

0 r /r 2

The approximate solution can be derived as

4(m+l) m1+l
I - l i . Ai • B

i-i rj f( 7 F- )C.8

where

A. - 2r,/4(m+l)

and

B. * w (r 2 -r 2 )/, w. - weight
j j2 1j

M+l is the order of the orthogonal polynomial, in this case

the Legendre polynomial on the interval (0,1) andz7 's are

the zeros of this polynomial. This type of formula is known

as a spherical product Gauss formula (12].

The annuli were picked at radii correspond ing to the

zeros of J0 (z) flecause Jo0 z) is the fastest damping component
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of the integrands. One additional annulus inside the first

zero was found necessary to account for the I I term when
Q* x

a is small and x (and y) approach zero. The distances

between annuli outside the first five to eight zeros were

found not to be critical and thus spaced arbitrarily.

The Gaussian Quadrature formula used was a Gauss-Legendre

24.point. formula as listed in [13] thus giving a degree of

accuiacy of 99. The integration is limited to only the first

quadrant as mentioned below. thus for a 24-point formula,

CM+I)2 or 576 points per annulus were used to evaluate the

integral.

The expression for Bn is easily seen to be an even func-

tion both radially and about both planer axcs, therefore,

only integration over the first quadrant was necessary.

With a little more difficulty, ln (r ) and 'n can be shown

(see Appendix F) to exhibit the same property provided one

expression is used for even n and another for odd n. By

calculating only over the first quadrant computer time was

considerably shortened.

In order to solve for coefficients of arbitrary order,

the Bessel functions of that order must first be obtained.

The available library subroutines were found inadequate for

this use for two reasons. First, these routines have an

upper limit of 100 on the order of the Bessel function that

can be computed and second, the routine had to be called for

each individual order.

50



KP
The recursive relatioi,

2n

J (Y) (Y) (5 19)

provides a basis for generating an array of Bcsscl functions

of various orders, HIowever for accuracy Jn+l1 (y) and J n 2 (y)

must be known.

The most accurate method to numerically calculate Besse'

functions of various orders and argu-ncnts was found to Ic a I
uniform asymptotic expansion involving Airy functions [i):

Ai (n 2/3A)
Jn(nz) 4 I\l 3 -k- -

k=0 nr

A' (n2/3A) b k(A) 1+ i 5 / E ( 5 . 2 0 )

n kr0 n

where A and A! are two types of Airy functions and

A 3/2 zn I + \i-1 Z <-
3

2 1

(n) -5/48 42 + z <l

ak06) << aoja)

V > 1.

The Airy functions are calculated using the equations

I -• I-
Ai(x) x C- xf(-6)

n d

A!(x) x 1_ • -6
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where

3/3 = (5.22)

and

2/3 A

The functions f(-6) and g(-&) are tabulated and linear

interpolation is used to determine their values. A is guar-

anteed to always be positive if n is selected to be larger

than the argument.

By picking an ordcr wuch higher than the argument, v,

and JV-1 , using the asymptotic expansion, the recursive

relationship (S.19) may be used to generate an array of

successive orders of the Bessel function down to and includ-

ing Jo 0  However, error builds up rapidly using this mP-thod.

A second relatioI

1 = Jo(y) + 2J 2 (y) + 2J 4 (y) + ... (5.23)

may be used to generate a normalizing factor

C l/ [Jo(y) + 2J 2 (y) - 2J4 (y) + "''. (5.24)

M~ultiplying each Bessel function value generated in the

recursive relation by C resulted in very accurate values

being obtained. The computer program used to solve the

equations is listed as Appendix H.

To evaluate the numerical results a check was used which

summed the coefficients an6 compr.•c this summation to an

analytic expression for a sum that could easily he solved

humer i cal y.

52



For a particIa~r phase angle of the nutation cycle, wot,

the radiance function for a target is

0 jkcw t
H(w0 t) I H ko 0 ) 0 (5.25)

k

For P point target and a rectangular, circularly nutat-

ing detector

-21T2o 2 k2ksin.wk j 2rk (Pcoswo t (r -X
H(wot) fe - --- e x 0 dkx

x

l -2-2 O ky sin.rhk ej21k y(sinw 0t (r -y 0 ))dky

(5,26)

which has the solut-on (see Appendix F)

H(Wot) F [Frrx Xo'w) F l(rx, X , w)][E2 (rvYoh)

SE2 (ryYo ;h

w h e r e r

r r-z-ocoswt 1

E1 (r,z,c) ¶ Erf + I

r'z-osinw°t 1
E2 (r,z,a) = F0f + 1

L/20 2/2"aJ

and Erf is the error function

x 2

grf(x) - 2 eu du (5.27)
/wo

By evaluating the analytic expression at the phase in-

stant (• 0 t) that the detector crosses the target and coMparing

S3.



it against equation (5.27) for ar appreciably high n, a

reasonabl-, check was mande on the accuracy of the individual

signal coefficients.

For the coefficients averaged over 'r+ the check Yas

made at wot - 0 where

k

and the analytic expression is

H(o) i El(rx,koW) ,E1 (rx,Xo,-W) E3(,yoh)

F3 (r y IY o Ph?]

where

E3(r,z,OL) = FCr,z,,a) 1 ot=O (5 .29)

The rms background voltage was used to check the coef-

ficients in the correlation function. The mean square volt-

age is

- 2 B 2 C O- •

eB = E(B (t)Q RB(O) E = k (5.30)
k

Appendix B shows that the correlation function may be written

as
RB(k) 1fi 2() k sin -- (- d 2 k (16B)

Substituting (5.1), (5.2), and (5.36) in (16B) and evaluat-

ing at T = 0

54

• • m , a I i I i ' - I



2 2 k2
2 -h) e 2 2 k 2

sin (nkxW) x
eB(rkx ÷L (2T•kx

s in 2 (Crk h) e-4T;k y

(+(2.k) y (5.31)

It can be shown (sce Appendix F) that an analytic expres-

sion is

e2 = 4ao R(w; o)R(hW3)
CB B

where
.2-f

-~~ t-2a I1 - Erfc - - L ]
Oi

2 2--a
+ £i[eaW F-rfc cza + 2

+ e~ Erfc (cco - -+Ff~co (5.: 0.a

and Erfc is the complimentary error function

- 2
Erfc(x) -2 e-U du .(.3

The computer program used to solve equations (5.6),

(S.7) and (5.9) and calculate the infinite summations is

listed as Appendix Ii.
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VI. NUMERICAL RESULTS

Numerical results constitute solving for the signal and

background coefficients and using these coefficients to

specify the form of the filter to be used in the threshold

detector as well as to calculate the probability of detection

as a function of signal-to-noise ratio (SNR), background-to-

noise ratio (BNR) and number of nutations (M) used to make

the decision. The probability of detection is determined

for the averaged equivalent signal-to-noise ratio and for

specific point targets.

Many different values for system parameters and target

locations L.ere used to cnmrrute the coefficients. A typical H

set of parameters is

nutation radius = 15
width of detector 30
height of detector I
blur circle standard deviation .5
background correlation length x-direction = 20
background correlation length y-direction - '0
position of detector in detector coordinate system

x direction 1 5
y direction = 0

target coordinates (if desired)
x direction - 0
y direction - 0

pointing error standard deviation = 7.5

A detector utilizing the parameters above would trace out

the area in the image plane shown in Figure 6.1.

1 AI1 units are in nilliradians.
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Ile,

Figure 6.1. Scanned Area of Nutating Detector.

This type scan was chosen beCause it crossed the center

of the coordinate system which would be the center of the

target blur circle for zero pointing error. Also, in the

case of a random pointing error in the absence of bias zero

becuscthe threshold detector design is based on a Gaussian

poiningerror with zero mean.

Asample calculation of 121 coefficients using the para-

meters above is listed in Appendix G. Thc equations shown

in Part V1 were used to check The accuracy of the coefficients.

Table 6.1 lists typical values for the summation of 121 coef-

ficients for various sets of parameters and the' calculated 1
F summation values.

S7'



TABLE 6.1

Calculated Sum Actual Sum

Signal (point target) .6826894 .6826993
.6826895 .6826994
.5438002 .5438.087

Signal (averaged) .2990664D-6 .2991232D-6
.2328138D-4 .2328142f)-4
* 265159SD-1 .265159SD-l

Background .6013477 .6012230
.2347420 .2347420
.8335525 .8319764

Besides the gencral shapes of the background and signal

spectra, variations in the spectra due to detector size,

background correlation lengths and coordinates of the detec-

tor are of interest. Curves in the following figures show

the effects of these variations.

Figures 6.2 through 6.5 show the envelope of the one

side of the two-sided background poecr spectral density

SB(w) •w ek(w-kwo)
k

where W is normalized to 2r. The curves of Figures 6.2 and

6.3 illustrate the effect of varying the background correla-

tion lengths. In Figure 6.2 the correlation lengths are the

same in both x- and y-directions. Practical measurements,

however, indicate that correlation lengths in the horizontal

(x-) direction may be lonper than in the vertical (y-) direc-

tion. The curves in Figure 6.3 are for thi.s casr.

5
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The curves of Figure 6.4 and 6.5 relate the spectrum to

changes in size of the detector. In Figure 6.4, only the

detector with BNR equal to 9 and number of nutations equal

to 100 are shown in Figures 6.11 through 6.13. Each figure

shows the envelope of one side of a double sided spectrum.

Two cases are considered. First, threshold detection systems

designed for different Gaussian pointing errors but with the

same size detector are shown in Figures 6.11 and 6.12 and

second, detection systems designed for the same printing

error but utilizing different size detectors are shown in

Figures 6.12 and 6.13.

The curves shown in Figures 6.14 through 6.16 show the

matched filter to a particular point target located within

the scan. Notice each of the filters exhibits a band pass

characteristic, This is because of the additional noise

component (background). The oscillations observed in the

point target spectra of Figures 6.6 to 6.8 have been sup-

pressed to provide a look at realizable filters.

The probability of detection for the threshold detector

was shown in Part IV to be

1 + MQkBNRJ

Figures 6.17 through 6.20 show Qd as a function of SNR,

BNR and M.

The probabilities of detection for point targets located

at specific points in tlhc scan have also been plotted. The

probability of detection for q specific point target is shown a_.-the

So



width of the detector is varied. As width is increased, so

is the area scanned by the detector. Figure 6.5 shows the

difference in speztra between a rectangular detector and a

square detector which have approximately the same surface

area. It should be obvious however that the rectangular

detector scans much more area per nutation than a square

detector of identical surface area.r

The envelopes of signal coefficients (magnitude only)

for a point target are plotted in Figures 6.6 through 6.8.

Phase information depends only on the location of the target

relative to the initial point for the nutation cycle vhich

is along the x axis. This has not been plotted. Changes in

the magnitude due to changes in detectoi size are shown.

Figures 6.9 and 6.10 show the envelopes of coefficients

for the signal that is averaged with respect to a Gaussian

pointing error. The bandwidth of the averaged signal is

much less than a point target as expected. The figures show
the spectra for two different standard deviations of point-

ing error.

Matched filters (magnitude only) for the threshold

~ 1E f k(r o )f• k* ! kB R -+

-~k 2 1 i
i +MQkBNR 2

where

M

SNP a
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Figures 6/21 through 6/24 show Q as a function of SNR',

BNR and M.

The parameters of the nutating optical system have been

varied to show their effect on Qand Qd.

I
Ii
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V11. CONCLUSIONS

The problem inlvestigated ill this thesis was to determine

an optimum processor to be used in detecting targets with an

infrared nutating system. The na turne of the sy'stcii divided

the problem into two areas: optimizing a spatial processor

according to -size andJ shape and optiin lag a tem.,poral pro -

cesscr that takes the oultpuLt tire varying voltage and decides

if a target is actually present.

General equations for the output fror.m a nutating detectorI

were known fromi Samucisson 's work-, however these equat ions

had not been solved for a spcci fic detector. At the same

for the noisýe offered am easy soIlution to int~egral equationi

of the Karhiunen-Loeve expansion which made statistical

detecýtion theory appealing. Sore work- had been done onl the

form of temporal processor using 5tatistical detection theor'. I
but this was limited to only one nutation becauseý of the

common background noise component between nutations.

Harger's derivations provided a means for desýzribi.;g a

temporal processor using statistical detecticn theo-ry, that

based its decisions on r-.~ulti-ple observations and includedl

the bac:kground no-ise, His work was extended here to include

unknown paranecters , amp itudle adposition, which irore

closely chaiacuc~rized. the system,. This extension, calledJ aI

threshlold! dez ector , wa,,s sio-wn- tD leý clut I nun: in tihe caise of

8 5I



small signal-to-noise ratios where detection is most diffi-

cult. The derivation also used the Gaussian assumption to

describe the background. This may' or may not be correct.

But in practice, the detector's performance may not suffer

greatly if this assumption is wrong.

To implement the threshold detcctor, the integrals

describing the detecor output were solved using the Gaussian

quadrature method of numerical integration. Checking the

computed coefficients b' a sumination providc-d a means of I
accepting the validity of the integrations. The form of the

threshold detection system using a rectangular detector was

uctermined and the frequency spectrum of the optii',um filter

was shown. To specify performance, the probability of

detection is p)latted against signal-to-noise and background-

to-noise ratios and the number of mutations on v..iich the

decision was based. The signal spectrnm for a point target

and background paver spectrai dcensit, is also plotted.

A designer rmav find these result:, use:fil in developing a I
system or inv'esti,,at-~ •h e franc, of an c u lsser

compared to the optimum;,. tz may also use these results to

determine the si:e of a rectangular spatial filter to be used.

Future work should include extending these results to

spa ial filter:, that are circular or eoliptic. The soec

- F nume ric al integration algorithm cou d prcbabuly be ued The

thrcshold detector .,a, found to be highly sensitive to back-

ground correlation I ngt~s. Thus, Sore form .,,f adaptive

proccss•:r snaid be :nchi~ed •c. -ini,, J': fect ,"
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background. At the present time, a mCasurCmCnt progvam is

under~ay ,it Naval Weapons Center, China akc, Cal i furnia

to determine average backgruund correlat ion lengths but for

different environmcnts, these correlation lengths could be

expected to vary considerably.

i
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APPENDIX A

I)ERI VAT ION OF SI cNA..I, SPFCTRA. . r ::F1CII \T q

The radiance on the detector is periodic because of the

nutation therefore it can be expressed in a Fourier series,

jn. ot
H(t) = I H e (IA)

nn

where

I eT H(t)e 0ifljot dt (2A)

But,

Hot) N'.,,(r)-ý(r-P(t)) d 2r (3A)

Substituting (3A) in (2A)

H fd= r N' (r) zJ dt 7(r-c(t) e (4A,
to

The transmittance, -r, may be expressed in terrs of the

inverse Fourier transform, assuming an infinite irage plane,

Sj {r r-Q Ct>)

C r-o(t)) = . 2 A*(k)e - (SA)

Rewriting the exp'oncnt,

k'(r-(t)) = k-r - rxcos. t - oIsinwot (6A)

Fquat inn (4.%) can be rei.-ritten,
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T 
-- 

j2 k-

d d 2 r N (r) f dt -j2 ~ W
n T 0

j2izAsinf(u! t10) eJnfwt0e e

where

A y

0 tan- kx/k Y. (7A)

Observe that

N'() = fd 2 r N'(r) - r (BA)

thus -jn(L t÷0)

ni fd 2 k NT(k *(l)e-

jnAs in ((,,),o ÷•
'e " (9A)

e,

Using the relation

J 1(z I f T . nesi (10A)

n I

the expression for the coefficients becomes

j ne '1IA
F= fd N' k k ee nr, \n,"x k2 (y'X'

Let

Itan"1 kNv/kx

then

.n -in in
.3 e = e"

8ewriting I A-)

' 19



d 2k N'(k>i*(k) cJl~2lPj Ix) (2A)
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APPIENPI X B

DERIVAIION OF B,\CKCROJND CCRREL.,ATION C'OEFFICIENTS

The nth power spectrur component of the background at

frequency nw0 is given by

Bn f R B T)C nj n 0 dSn-J %B(t)e dT (IB)
0

But R (-) is the correlation function of detector output

averaged with respect to the starting time.

RB) E, [Bo (t lB (t)] d t (2B)

Using the Cxpress ion f1 r B(t)j fron Part I ,

T
RB(T) Tf dt F 1'(r) z(ri-,(t+T))d -r1

0

Interchanging the order of expectation and integration,

RfT dt 2  fd 2 r, •r-(t+)]

0[T-, 2 t N' (d : r , (4B

Assuming stationary background,

'-j -1

91



- -w--~,-_-W..-•,-,,•-

where ¢•(rl-r 2 ) is the background covariancc function on the

image plane.

It is now convenient to express the integrand in terms

of two-dimensional spatial Fourier transform. To begin with

-(r) [ (k)e d2 k (6B)
- J -

where T(k) is the Fourier transform of the aperture function

r (r) and k n (kx ,ky). Then

Sfd2k 1 (k11 fd2 1' 2 kT(k2)e jT-, (kl'1 2 "r2 )

-j2r,[ýl o(tii)-k 2 -(ij 7 Be (7B)

Substitutirg (5B) and (7B) in (4B) and interchanging the

order of integration,

R(L) fd 2k1 T(k1 ) fd 2 k2. t*(k,)

• I T

Of . 2

Th lstine ral beos wit dr2 (r-.e -- 8)

The last integral becom.es, with R~ = r-r,

[[ - , -j2 -R1_ j - 2-k•', rI,

[rd2R, (R)e e 9

But the bracket above is the Fourier transforn of ý(r , or

the Wiener spcctrunl of background on the image plane, L.ct

-j2.k-,'. -.

(21B



i

If Fo(k) is the Fourier transform of the point spread func-

lion antd WB(k) is the Wiencr spectrum of background on the

object plane, then

W~'.() - IFP00) 2 Wi (11)(1 3

This relation is analogous to the output noise spectr tr

expression: du to a noise inpuL to a linear systcm. In terms

of Wp(k) the last line of (8B) is

fej (k d. rk -k) )'r (

Substituting this into (8B) and performing the integration

with respect to k,

RB(T) = d'dk LT(k)I WI(k)

T jw 27k ' [ (t+ý) r 't)]

mi 
0

Since p(t) (p cOos• t s

-k x pcos-ot -k y S inwo0t

SA(-,)cOos-0t + B(.)lsi4nw ot Z= a r coS! ot- t)J)

whei '.,

A(i) = p[k cos,, - + k siný - k
v 0 0

R~ ) = c[-k x si r,..o0 + 'ýVcoS L.o -0).

c( L• \.. ,) = , 2 -( cos'-O (kr
N. 0 1\x Y



-'I
and

t(a) tan-1 B() (14B)
Aj (IT

Therefore the last integral of (13B) is

.T j2Trc COS (W T+0)) '

00
iz e d t = Jo (2 •c 0I B : = -•- •

where 3 ',) is the zeroth order Bcsscl function. Therefore,

the correlation function R is given by

f(I¶K)) 2  W (k) Jo(4 pk sin --- (16B)

where

k x and d dk-dk

FinL,-Iy, the power spectrum co-fficient 6n is, from (1B)

ýn= JIT(k)l 2 I (k)d k

T 0( W -.,
J 2a sin e o d- (17B)

where a = 2,kp. The last integral becomes with x w T/2

f Jo (2a sin x) cos2nx dx
0

f Jo(2a sin x)sin 2n7 dx (18B)

The cosine integral equals J(a) and the sine itegral
n

vanishes [2]. Therefore on using (18B)

I
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1!
O1n fjT(k)2 I [Fo k I W lB k J 2(2p K)d k (19B) [

This is the gencral power spectrum expression for iA nutating J
detector output. 'The power at frcquc:ticy o1w is expresszd in

terms of aperture transform <k), optical transfer function

"F (k), Wiener spectrum of background WB(k) and nutation
0-B

radius ithrough Jn2(2iipk ). The integration is over the entiie

k-plane.
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JAPH:NDIX C

EXPECTATION OF A12

The essential calculation required to find

A1 2 (Zn)) - B['12((Z'lrB)l (iC)

for Gaussian background B is the expectation

[ T T ?
I = EB exp A(t)B(t)dt - c f B (t)dt0 :.

where

c NI/N

and
M

A~)"N -i(nt Sn~t)(C

B(t) may be expanded in its Karhunen-Loeve (K-L) repre-

sentation provided the mean square value

2E(B (t)) < OQ 3C)

and thus the integral equation

i ~T-uXii(t) f RB(t,u) ;i(u)du 0 < t < T (4C)

0

can be solved. Xi are called the eigenvalues of the e( uation

and €. (t) are called the eigenfunctions.I

Using .IercCr's thcorew, the correlation function of the

background nay be expressed as
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S!4

RB(tu) (SC) I
The K-1, expansion of 13(t) is

B(t) E bk't)

011
'II

With -- "

bk f B(t) ¢•(t)dt 0 < t < T (6C)k
0

where the coefficients, bk, are uncorrelated and because L

B(t) i3 Gaussian the coefficients are statistically inde-

pendent with means "k and variances "

A!so expzanding- A(t),

A(t) akkt
k

with

T
ak = f A(t) 4*(t)dt, 0 < t < T. (7C)

Rewriting in terms of the expansions

I B exp k n k a k n k k(tn(t) dt

T o co "n

c f k E bnbt .(t)¢.•(t) dt (8C)o n k"

Us i n1

6x). = x(t)(t)dt



~bn in C 1

Using the nccucc of tlcl off,'nt

For Gaussian rirdowi vavi~I)MOS

L-(wxx'*) x x~ nm/12A

and %v is a constant.

1.t x ark/.Ic

and mx ft -i an /2c

then

2 expc W , l +2

En exp I-I ___j (12c)
bn2c(1 +2cXd)

Substituting (12,C) into (10C), ani Fcparating term~s
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I -l (1 ÷ 2cXn) " cXp
',n nn

B .V

-i 1.'C)

n n n-XI , ---I- -,-5-,-T-n(c)-

This result can bc written in ciosed foam by using the

dcfinition All (a,4)

2

I an I 'N N T TF I. +"2ox 'I5 f dIt]A(tl) f d\-2A t 2 q(tI t 2) (14C)S11 •*11
n n 00

where

IL
1, • - 7,1cT,- n111

Nn n *

is such th.,t operating on -(t,, with

f f R (tt 2 ) + --L R ("1,t 2 ) (.)dt 1 t2  (15C)

and using Mercer's theorem viel,

Sq(tltt,) + I RP (U ,t ) q(t3,t )dt5 R R (TiI t,t ) (17C)

0

Likewise,

Pik W -a 'C) ~*.~*c
C r n n it n n

n I + 2C),
n

.b(t) h(t). tt (18 )

9



who re

22

Nh(t) + 2M f RB(t 3 ,t) h(t 3 )dt 3 - Mmb(t) (ZOC)

Taking the logarithm of both sides of equation (13C) and

using the equations above

tn I I (1 + 2cXn)

T M
+N f J.t z (

• •[ dt1,• •(Z•(t 1 )- (t)

T 1
f dt 2  2 (Z (t 2 ) Sn(tj)J q(tl't,)

( 1%(t) S2(t h(t~dt

"0 [no r (t) m• N"•= "

in I E r (1 + ZbX n)l
n

+ T' [0 z•,1z•(l mrZm(t 2 ) £r S•'(tl) m-r Zmt)-•

- •lE Sn,(t 2) •=• Z•(tl)+ * -1 S•(tl)m • Sm(lt 2 jq(t 't2)dtldtz

T
+ E mE(t)h(tEdt

f m (Zt(t) St(t)) h(t)dtT
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The likelihood ratio desired is

2~ H T
A-x E I Z (t)Sn (t.dt

A12[{Zn}) xpN n.] o n 1

I I H 2

f Sn(I)dt} I. (22C)
j0 1 0

Taking the logarithm of both sides and substituting the

cxpression for .

ill (. I zn(t)S (t)dt12 ) N nl~l 2 n 1

z T S2(t)dt

I.N {:= 0

I T T M N1
I f E " z (ti) I: Sv 2)0 0 m=1 ,m

I: S t(tl) z, z M (t2) Z S M (t 2) • a

m1€ Sz(t) E S (t2) C~tit-)dý dt, '-

T 2 T M
- mb(t)h(t)dt E (Ze(t) - Sý(t))h(t)dt
0 o 1
0 I (23C)
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- ~ ~ ~ ~ ~ ~ ~ PP N I D--~---- .---. a-* -~---W -- -- ~*-~Wa

11 0

wh C. I-
2 r T

q N M f f (u (1 11 t du 1 D

iv10

q) (t ) d j q du (u)tKc(tiu1 (2D)

VAR NM f q td + %I' fdt. (t) fdquR (tu (0

Substitutinig (110) into the first term of the variance

exprc Ssion

NNI f1  2.t., f dT ft) f 2(t) f" f(u) q(ti )du

,flfT f (u) f(v)qI(t , L)q(t v) dudv] (3D)

0 0J

Using the Karhunen-Leeve rcprescntatioll

~Tq-(t)d1t f f f: ~kz 1 (t),t(t) dt

CO 2N1 ,
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+ F.} f. Ef* 2F ri f (t)4'*(t)dt

3k x) i
N 4 f

Tj

0 0

Us ing

0

then M2
2M 2%.16nf q- 2 (t)dt (t 1 d

M 2• Tk / A/I.

-_1iNI (5D)
ffk*

The second tcrnm may be expressed in a similar manner to

give

N k kf k,• k +-- k
"N k kk•÷"•'VA ~~kk 7~~ k)2 + (k)~~ ( )

21\1 IVAR f f* " - (6D)

:,A,•. •-k kq"l :'x
kF I -Nr x k

The equivalent sýignal to noise ratio in Part II is

m fTE an n f(t)q(t)dt

d0 n_ o (7D)

The F-L representation of the numerator is

M ~T M o
F a f(t)q(t)dt E + 1 (8 1)n=1 n=l (

n 103
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d may now be represented by dividing (BD) by the square root J
of (6D))

2 M 2 2M1
2" •: a •.II I /C + xk)

I la

[ N 41 2,Nl~ { I '
dI - k1- /(]+- -x D i

I
d i nn

II

i
104 
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AP'PLN~l)X F.

NON - zIRO THIi.S FOR. NW,11!'i CAI. I NTIIlA;IA ON

Equz-t ionl (5,S) for thc rad iance function for a point

target may, bc writtecu as

.2 2 i 0,~jp4
-> y SlcX i

IV c re

Q (r,, -Y000

and

* tan -1 (lE )

Let E(x,y) bc that part of the integral tniat is even about

both planiar axis, which is

_n~y = 2 2 2iic +)n'2 (H

Usijng Eul r' s rc lat ion the intecgrz-l becomes



J(X,y) [COS (PX+Qy) -~j Sill(I'X4Qy)1 cosn, - jsin nfldxdy (3E)

Using trigonometric identities

f 1,(X,y Y) T. dxdy,

where

TI co-, TX COS Qy COS ný,

T2 =sinPx sin Q)y cos n4

T3 - sin P~x cos Qy -,in ný

T4=-cos Px sin Q)y Sin n.ý

TS= -j sin PIx Cos Qy cos n,,

=-j iCOS Px sin Q) COS n*ý

T=-j Cos P~x cos Qy sin ný

T8=+j sin Px sin Qy sin n (E

To save computation time it is necessary to determine

which of the -ight integrals are always z-ero and for which *i

they aie zero.

Observe that

COS n4ý R c- e n = R e(j

n
e R cosý + in t)~

x n

ix v
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Likewise

sin q• M I(x+j y) D (6L)

The first term in brackets is always even and may be made

part of E(x,y). The second term in brackets may be expanded

by the binomial expansion with the general term

n-k k (7E)
Wx (jy) (71

The first integral of (4E) becomes

11 f E(x,y)cos Px cos Qy Re(x+jy)n dxdy (8E)

For ' to he nc-i-zero, Re(x+jy)n must be even in x and even

in y. From (7h) this is truc only of even n; for odd n, I

will alway5 be zero.

Examining the other seven integrals yields

JE(x,yf)[cos P'x cos Qy cos n-

+ j sin Px sin Qy sin n,]dxdy n even V
fE(x,y)[cos Px sin Qy sin no

+ j sin Px cos Qy cos nfldxdy n odd

(9E)

Observing that syminetry about the x- and y-axis is necessary-

for this integral to be non-zero and integrating only when

the integral is non-zero permits one to integrate only over

the first quadrant.

107



tI

iI
APPENDIX F

SUMIt.%1'1ON CUECK

The signal for a point target was shown in Part II to be

H (wot) f N' (r),r(r - p(t)) d'r (IF)
0

Assuming an infinite image plane, H(w t) may be written in
0

terms of the Fourier transform as

Ii/w~t) -j2rk'P(t) d 2 k (2F)

1i0 t) f N'(k)T,(k)e d k -2r

For a rectangular detector (2F) may be writtcer as

2 2 2. 2
1i2(w t) 0 IT (axtSy sin-rikx sin-hkv

x y

ej2Tik.( t)- ) P t r-j22.(k1x(1k. y ) d'k (3F)

Let

x V" orkx

y Q- ky

and noting the integral may be separated into twoparts

2. X P2-ý, t - r)

1I(wot) .ex sin _ c o 0  r 0  dx

s hi

2 f'2c j- y(psinw t " (r' d

Y - -e a 0 dy
y

(4F)
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Since the integration is -• to +• only even integrands will

be non-zcro. Rewriting (,1F)

xI

22 s 2" ill x[±cO-o )I dx
1If(W4 t) f e os y2 X sinCoswt -(ry-Y) ] dx

1w

f2 f y er2 2 cos(-v7 y I sinuw t - (r~ -y) )dy.

i ~(SF) •

The general form of the integral is

0 2R =R(B) -I -usL ooC)d.(F

Differentiating with respect to B

ca = 2f: e cos By cos Cu du. (7F)
0

But the solution to (7F) is known [2]:

2 .
dRB) 1 e :4e :. (8F"dB 2r

Since the constant of integration R{0") =0, =

R(B) e dv f e dw (9F)

Let

V-C

and
W+C-
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then

B-C B+C132- e' 22A ' 
2  

- 4 .

2 2 2T
R(B) dP dQ

Er f + r
Erf--2/, (10F)

w'here

Erf(z) 2 f Cz (H2)
0

Substituting the result (10F) into (SF)

11 ((0 t (rr (7 cosi t - r+o +x

-Erf (J2 [pcosw t r r+x 0 -

"+1'r ! os i n,. 0 t 1 Vh
~0 0 r~V j +

-Erf ( [si.ninwot r "+o (12F)

The mean square voltage of the background may also be

solved in a like manner.

From Part V, the mean square voltage was shown to be

- f •,(k-)B (k) W (k) d2 k (131:)eB BI~J 'o ' - -

which for a rectangular detector becomes

f sin"(r' kWl) ex
-2 in2a " dk

f ';Tk' + (21rk)> X
x x
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2.4 2 2 k2

sin ('k', h) e Y k
e"°B2a --- ,"• ••dky (14F)

Let t ing

t 2nk

the general form of the integral to be solved is

1 f sin
2 (2 -2t2

o t 2 /4 2 2 (15F)

Taking the first and second derivatives one has

2 2
dRlij 1 fw sin(2'it) C"0 t

du TJ t 2 2 dt (16-

and A

2ut 2 22d2 R(I) 2 cos(2tt) e (17F)du 0 C" t .

The solution to the second derivative is knomn (2]:

222
d2R(u) e 2 C -r LI Erfc (Ci-

du2 2 1 20

+ e at Erfc Cac + ! (18F)

where

Erfc(:) y2 (191:)
TI z

is the complimentary error function.

With lengthy and tedious calculations it can be shown

by us ing the re 1 at ion



r~ -0

0i t vPwd 1  
(Zi

with initial, coiiditiuns equal to zcro and

2~) u (21F)

that

R (w 1Erfc e ~c(l/c~~

2 J
+ Q Erfc (Do

+ e ~ rfc (

-2 Frfc (L (22F)

The mecan squjare voltage thus becomes

-2 4 ct R (w; Rh;~ 2
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APPENDI4X If

c C.Dj' i P.JT ~R P F, f io 1(3 C t C, )L A IF lliE F-CU4IER -CjitJrPICIENTS
c 1 IHF V-i- CAGR0(..j C.(',fl-L: I N HINCTt( N, A PU IN1I TAfRGET
r NJ AW)AN HA~t 1( -T Vl A VAS WPLI NiI NG EFkLR
c Fow t, 14u1 41 I(v :PiKIAL '.SYSli W ~ITHt' RECTANc.'UL"R

r. AA z AClKGRrjiI% (.' .AII FtJN:.T ICN COGEFF-(ZEROi ORDER)
C AL IwA UAN9  N' I.'KH'TV Li FIýIEtTS (VECTOR)
C FNO r IhrJMNid JI (Aj;LFF1CINT (ZERC, ORULA)
c FN =S1(9'4A -JjI Clýi~~T (VcCACll)R)C.~~ ~ F;V;JL A\4 AGiL CC)FFl- (Z(R ORDk)
C, FAv( u aV ~4v l ý'ro "I ( NAL V )LUkl ;R Cr.EFF (V ECT OR)I
c R t-rl 1 ~ i '4 TI '-t. ()I U S
C S I ( I SA NO,' i,- 0;-V I 4Tl I ud6f- Rt.U R C IRCL E

C. W 1 a1L W H (4 ; T cC.T M (X -L) i kE(. T I ir)
C H 10* 1 ,H" (;t- [ý T F- C .uk Y-.- 1P Tc 1 N )

Ca . Al I.V[ I (,S C. L ý & hG1l jI iiACKCýkOUNO (X-',IRErT ION)
C = I."A/vF NY- C [-.NT 1 '*C.GJ ~ (Y-DIKCTIUN
C Pfnvsl výiL:- I-;-flA [V ISTi(WI J Jr P j\T 1 %T IG £k ý

c XO = FTFCiT.:ý X-0iAT A(H C:T IGN
c O = r [T!C.T1') k hIi\ Y-OIRL CTION

c. kX =POIfNT T~:U1CCX.,kD1\ATi- X-DIRICTION
C. RY -POINT TAR.7;T COCROVH ATE Y-DIRF.CTIL)N
r R.IKANC1 F -Prjlt,4k CCURUINATES jF POINT TARGET
c NS NLJMBFR ')I F IRST Cr.-.FrI~li-Nl DFSIRED
c NUM NU'41" CI LAST CC ,FE ICIVtN1 OFSIREO
C. I AVF-1 EI SIG~iM.L WILL. CALCULATý AVERAGE SIGNAL CCIEýF
C. I A 7-= "SIGNAL" wILL CALCULATE POINT TARGET COEFF

0 TMF NS I C A(I-F(12 0)
Cr.MPtEX;,16 F',(IOiF-\JO,FAVC,-(120).FAVGO
cnmm, 'N I/OT P;K,-' "GS 1C, 1 1 r, AL 6 E kX kY XO Yo
Cfnw.1-14 IA VPrM/ 4k J'4.,1AV: ,P
c.Onm",lfN / S T A q N;
CC'i.y*¶ON /ANGI / kANJOL

PW)r ?, XOvYO,k,,A3
R tr) 3.*NS. Nti'S* V .. V- PO

C4( L Stlit 'K
CALL AK,ý'N(41-CaA *AA
CALL SIW4;NJL( FNJ.FNJO

IFE IAVE.FQ.1 ) R=0.Q0O
C.Alt SUMCK
C.ALt S IGN AL it-i"vG. FAVG(l)I
W'41TF (VI E06~AAr
WFITe- (9) FAVCGO.FAVC,

I FflR'.AAI (10 l'3)
F- ~ -I'l, AT ( K) 1 0. 0

4 FflrtiAT(8Fl0.4~)

END)



SUBR(OUTIN E EqKRN (VP IV)

cSUHIZ~iUTINF FKI(GR COMPUTES T14E COErFVCIENTS flF IHI
C ECACIKGROUND '0RPFLATICIN FU'NICTION UP TOý 120 ORDERS.
C lI1GHc'4 OkDERS MAY E4S!LY .3L Cý'-PUlED fY ONL.Y Cfl"NcaNG

c THEL UI',lENS1(,N STATEMEViTS.

zP vAtuES OF PArm1 FOR DIFFERENT A%!NJLII
2 *WrflkKING VECTOR~ FOR RADII
MAXR MAXIMUM RADIUS ')F OUTER ANNULUS

NIZI = IMENSICN Or- ZP
c VP =W7ýRKUINI VýCTCR IN FIRST PART ANL) RETURN VECTOR

C IN TH=- sEc)N-r) PAT. r
%, V aLLRO ORDER COEFFICIENT

C
C

IMPt-IrIT RE;,L*3 (A-H#C'-?.)
DIM;-NSIC*N VP(1)99DN(50*120)
DINIýNSIV'N DI( 50hZ0 (20,Z.( 50)
01 MýNS IUN il 24) ,w(24)9,T H( 25)
COMMIJN /VR/NUM, IAVL- ,P0
CU.MMC'hJ /DTPý-M/ RHO(,SIG,wl,Hl,AL, bs-,RxP~YXOY0
CJM-iC'IN /SKPý,M/ AB,C.,D
COMMON /,NF1QST/ NPIRST
DATA MAXP/4/,NR/1/ NIZI/20/
DATA 0/.~i2b?'D .D,.L01.D,5[0 20.
ID0925.000,30.000,40:0D0 5 .006.070,700C,80oD,
29.0:)0,1Q0.0CQ,150.0V60,ýO0.0O,:),00tU.OG0/

N F I RS T = 0
P1 - rARCOS(-.1.DO)

C

S CALCULATE COJNSTANTS FCR 1I4TEC-RAI

CONST AL 4,E4ES1 Gl s2/PI /PI
AzbWd/2'.DO/S IG
B=H/?.DO/S iG
C * (tL-ISIG) :1 P

bO~ G -*
E RHO/SIG

C SET AN'tJULI F C, SPECIr'1O PARAMET~kS

DO 150 I=1,'J!Z1

IF(z?(N1IZI).GT.-k!XR)G') TC 210
DZ x P! /F\F./r
MMMv 50- NI L I
DO 200 lzlt,-MM
Z(I+NIZL) =zINIZI) + 119Z
IF(7(Ii-NIZI).GT.M'-AX:0Gu TO 210

200 CCNT lrUý
C
E MAX =NUM~EE OF ANNUL I
C,
210 MAX=1+NlZI-l

C
C

PRINT4,iIiALtC,8COEZ
PRINT 41,(Z(T)I1=1,1%Ax)
00 300 I=I,'VA)

C
C
C CO'MPUTE c(ADII,4~EICGHT' AND~ ANC-LýS FOR EACH1 ANNULUS
C
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CALL WAA(Z( I) tZ(1+11 #P TH#WNPQ)
cI

C NFIRSTz I

DO 115NzI U
11.5 DN I NNI) 0.DOf

CQMPUTý FUNCTICSN, FOR EACH4 RADIUS

DO 280 K-L,NPQ
C.ALL 3FSSL (k(?()l "VP ,VJN,r'JU)
RVm-VJN-)?/W0P(ý(KtJ4'-2)
EP-0C-XP(%( K)**2)
Dn 120 NlJm1,NUMi

120 VP(,NN) =VP( NN)?4-02/z-P
REC-). DO

C
C
C, COMPUTC FU;4CT10IN FOR EACH ANGLE
C

00 270 J=1,NP'0
270 RaCFQL-r-UPiK)4DCOS(TH(J) ti\(~K)s'OSIN(TH(J?)))

V=O.Do
00 130, NN-1 NUM

1.30 D N I , N -= 1( I NN)+ RE C 4V P(NN ~W(K)
280 0 1(11 01 ( 1 + R FC"1,RV W(K 1
300 CONTINIJF

C
C
C SUM VALUE FR~OM FACH ANNULUS

L0C 400 !=1.MAX
J =MAX +- 1 - I

400 V = V + 01(J)
V =V * C '_ N S T
PRINi 3,N9V,DI(Mt&X)
N BQ=0:
PRINTq 13 WNO V
PRI NT 4,1 0( (),! 1l MAX)
DO 500 fJP-1,NIUM
VQmr0 * 00
V P ( f) - 0. 00
00 600 1=1,M'AX

VP(fNP) ---V;P(( P) *DN(JqNP)
IF(D)NIJ PIP) GT V~.jM) VQ;4zrCN(J,NP)

600 CONT 11W I
VP(,NP)--VPC NP)0,CONST
PRINT 139NP,VP4'4P)
PRINT l4,NP,VQM, DN(M.AX,NP)

500 CcN1IfhUj

CALCULATE SUM FOR INTEOPATICN CHECK
C

SUM-v
00 700 ja1.,NUM
I =NUM+ j-J
SUPMrSUf,,+2.D0 VP( 1)

700 CLNTINUE-
PkIIYT l2,SU"
RETURN

I F0OiiiAT 1015)
2c FCPflV '8F 10. 0)
3 FC'FM;T(2110,1P2F15.6)

12 FCifT A( 5X, CIL0. 131

14 F(JkMA T( 5Y 114 16X, y")0. 13f,&X G20. 13)
16 r:0FM' -T ( -itPD20. 12)

END
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VLJNCT TON FU(X, YI

FUINCT JON FU IS AN4 AJX!L I ARY Q'JUY INE rI EKGRN THAl
r CVMPUTa S THAT PART LIF THE I Ni EGRANO N~iT RAODIAL LY

C SYMMzT R I C

I MPLI C IT RF AL" 8 ( A-H, r-ZI
CGMMý2N /LiKPRM/ 41biCiO
P Ir1:. to0
IF( X.Ný Q.OPU) P I OS I Pjt Al, X) AI X
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C SUBPCUIINE SIGNAL(RECtRECD)
C
C SUIWC(-.UTltjF S!GNAL COMflPUTES THE FOURIER COEFFICIENTS OF
C A POINT TARGE-T 3R AVErAGFEJ COEFFICIENTS OVER A
C GAUSSIAN POINTING ERROR
C
C
C, ZP = VALUF' Cý K Oil FOR DIFFERENT AN4NULI
C Z =WO.RKING VECTOR FflR RADII
C, M4XR = MAXIMUM RADIUS CF OUIER ANNULUS

C, NIZ1 DIM¶ENSWIN CF ZP
c REC. = ETURN VECTOR LIP COEFFICIENTS
c RECO =ZER3 ORDER COEFFICýIENT

IMPLICIT kcWL'8 (A-HO-Z)

OIt-E.NSI(,N 01½(0) ,DNJ(50,120),DN(50,120),Z(50),ZP(20)
D IM EN' 10N R(24),WC24)jTH(24)
COMPL;:X-16 ~PC(1),VFEC(12OflRECC,VSqFWP
C. C- 'M CýN ,: Vc' M/ NUM, I "V ,PL
cC4m'mI /LTPPM/ RHG,SIG,WI ,HAL,BE9RX,RYX0,Yo
COMMON /SIPRMI A*B,CfpxQx
CCVM~CN /t%.FIRST/ Nr-IRST
CCt-MMIN /STAPTf NS
CCVOMMN /4NGL/ RANGL

IDO,25.OGQo30~ o.0D,4o.OD0O,50.0C:)0,60.OC)O 070.0O,80.ODO,
290. OL 09 100. GOO, I ýC.C00,200.O00,94 000/ .1
NFl PST 0
VS:Dcmpt.X(0.cO,-' .00)PI D- OpCOS(-i.GFl"Q
P12 P1/2.L1
KKKrU

CCiC CALCULf"TE CONSTANTS FOR INTEGRAL
C

SC DSQPT(2.00hGrAM'a
A =W I/ SS
B rH/SG
CONST=tAB/PI/PI
C = 1.00
PX=-XO
OX2-YOI
If (I AVEý. EQ. 0) PX =P X+PXIF( IaVý.,)G ýX=QX+Z
PX=PXt'SQRT(2.CO0)/G,ý''.t
QX=QX'lDSQRT(2 .00) /GAýM4
E = 2.00O-RHO/SG

C
C SET ANNULI FOR SPECIFIC PARAMETF;S

OZ =0.D00
DO. 150 l=1,'IZl

150 Z(I)=ZP(!)/(2.DO:'*E)
I =
IF(Z(N!Zl).G.'T.MAXR)Gr- TO 210
CZ= 15 .PO.P lIE
Ml'-"=50- NI Zi
Dr, 200 l=1,'lVlA
Z( I +ri 1 ) = ZAN I Z I) +- I30z
IF(Zi 21 1+ NIZI .GCr * AXR) CC TO 210

P RI NT 1' 7,~~IZ I- I zo I



C

C MAX NUMB~ER OF ANNULI

210 MAX=1+N!Zl-l
GO TO 2 12

211 M1,X =I
212 PP I NT 4tIkHLBf14R,0,0PXQ
215 Pkfi"T 4 ,Z I) , 11, N X)
220 DO 300 I=1t~tX

C
.c COMPUTE RAUli 1 sEIGHTS AND ANGLES FOIR EACH ANNULLUS

NFl RST~ 1
NPq=NPQ
D I( I) = 0 .00
WD' IIS NN=NIS t $JM
DNAJ 1,Nt12)zO.D0

115 CUf,(I,NN) - 0.00
I F (KKK. i0.1) cGr TO 300
DC' 230 Km1,NPQ
RK2 =P ( K ) 1'~ 2
IFiRK2.GT.l714) GO TO 485
E P= [!X P (RK 2)

If(F.GT1.O50) Gl) TO 285
CALL S L:SSL (P('i).E,BN,VJN,N'UM)
RV=vJNI4 FP
PECG'=F( R iK) tTH, 0)

C
C
c CCMPL'TE FUINCT ICN FOP~ EACH RADIUS

R[CC.RECO*RVi vJ(K I

DI (I) C :7( I )i PP
Oný 130 NN=NS,N.JM

RELCNN) ;ýEC(NNfl BN(NN)P'W(K)
PP iEC ( NY

0I\.( I 0i'%') =i£.( I NN)l+ PP

130C'rT?
28 CC'NJE

300 CCN!'I NUE
C
C
C SUM VA&LUE FRCM EACH ANNUJLUS
C

VZ = 0.00
V1 = o.c~o
V2 -0.00
DO 400 1=1,MAX
J = MAX + - I
lF(0ABS(DI(J) ).3T.LAES( VZl) VZ=DI(J)
IF-(DI(J).LE.O.-00) VI =V1+D1(J)

400 !F(D!(J).GT,0.00) V? V2i-OI(J)

RE C0=9ZECC.' CýTST
NEb0=0
PRINT 4,(D!(I 1).I1,MAX)

PklrNT 149Ni3Q,VZUI (MAX)
00, 500 NP=rNS'ý,NJ'4

V1 0.170
V 1 Jzo . D0

V2=0. ("o
2?J=0.00
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00 600 IaltMAX
J cMAX+ 1-I
1F(tCN(JiNPI.L.T.O.0O) VlcVI+ON\(Jt,I.P)
I F(D-NJ( J9NP) .LT.0.(O0) VIJ=VlJ+C'NJ(JNP)
I F ( DN( J 9N 0 IGE .0. D0) V? = V?J+ DN J(, NP)
IF(D)AEBS(DN4(J,NP) ).CT.DABS(VQM)) VQMrDN(JNP)

600 CC14 T I NUE
P FC (14P 1; 1C fPL X (V I+VVIJ + V2J)
RE C P) :E C ( tP)A\C ONST
PRINT 19,ND,REC(NP)
PRINT 14, NP,VQM, DN (MAX, NP)

500 C ONT I NUE
725 CONT INUF

V5tOCVPLX(D.D0, 1.00)
DO 800 NP=,NSKNLM

800 PEC(NP)=PLC(,NP)-tVS+-cNP
I FI(IAV EEQ .O) GG TO 960
SUM~q Eclý
I F(NS .\ E.I.) SUM= 0. ODO
PRINT 19,NBQ,RECO

C
C
C CALCULATE SUM FOR INTEGRATION CHECK

DO 900 IzNSNUM
PQ=REC( I )
PRINT 19,1 IREC( I

900 SUML-SUf.'2.DO*PQ
PRINT 18, SUM, SUkiJ
REl UR.N

960 CONTINUE
VS=OCMPI;LX( O.r0,-1.00)O
PRINT 19,NPQRECO
IF(NS.NE.1) SU~9t0.D0
SUrMJ~) . 00
DO 950 NP=NS,'NUM
VFC(NP)=PEC(NP)' 'DCMPLX(DCCS(.NP-RAýNGL),:)SIN(NPtCRANGL))
PRINT 1), NP,VEC(NP)
PP=VEC ( NP )
SUM=SU M4-2 . D04PP
P P=VErC ( NP) -'VS I
SUMJ= SU 'MJ +PP

950 C qNT 1NJ F
PRINT 18,SUM,SUMJ
RETURN

285 KKK~l
Gn TD 300

1 FLJRMAT(10I5)
2 i-C'RMAT( 8c10.O01
3 FORMAT (2i10, 1P2E 15.6)
4 FOkMAT (iP8 E15 .5)
5 FO RMA I (2 15)
6 F~ORMAT(1P2E15.6)
12 F CRMIAT( 5X tGZ0. 13)
13 FLcMAT 'ýX, 1t, 6X,G20. 13)
14 FCIA.IT (5X , 14 t6, 62.0 .13 9 X,('20. 13)
15 FCRYAý'.T( ?X,13,2X,IPE15.6,2X,lPE15.6,2X,13t2XlPE15.6,2X

1 F1PI5.6)
16 CC Ml-:( i P%20 . 1 2
17 F (j,-, b6T5X ,'I %.x \q'.T L-a§F' ENC'JG-l Zl4AxW , =15.e8
18 FCQ tI ý U =-- 0.1 ,1S I'Jz!,G 0 3
119 FORMAT (5X,14,6X.G25.13,G?0.13)

ENO
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FUNCTION F (RtTHNN)
C
c
c FUNCTION F IS AN AUXILIARY R9UTIN'L ' ' SIr-W- THAT
c COMPUJTES 1THAtT PART OF THE INTEGRANC." NOT RADIALLY
C SYMMETRIC
C
C

IMPLICIT kEtL'43 (A-H,tO-z)
CCMPLFX' 16 F
DI1ME VS I ON 'TH(I)
DI MENSI ON AAE (24), LOS (24), AAO(24 I, B)( 24)
COMML-N /sIPPJ4/ AEb,CPXIQX
CATA NPP/24/

AA= 0. 0r)0
BB=O..O00
lF(N%.GT.0) GO 0 T 5
DO 1 J~1,trJpt
X=,'ýDCOS(TH(J))
Y=R' , NS1N( TH(J))
D)sX=(PSIN(pX X)

DCX=[PC1 st PX.' X)
CCY=DCOS{ QX Y)

IF(X.NF.0.CU0) PhDLSIN(AXX)/(At X)
1 FtY.NF .0 * 00) P1 P1" OS IN(t 'Y )/(8 .iY)
AAE( J)=,OCXý'CYf,P1
BBE(JhOS"X .5Y'.P1

b880(J)=-oSX'. 1)Y.,P I
CONT INU E
If1jJJLT.0) GO TO 10
00 20 J~lNP'k

20 C:)T JINUE
F=DCYvPLX( A4 88)
IF(NN.r 0.0) F=0CMlPLX( AAC-. DO)
RET UP. N

10 DO~ 40 J=ItNPP
AA=A6+,,A(. ( JI )SNC?~ THI J) I

(J "rC s ( l -. r (
40 CC11TINUF

F=r'CtPL X(AA, aei
RET UkN
END

12~



SUBROUTINE 6AA(Rl, P2, P,Tt1,W,N)

C
c StURR1UTINE WAA CZUMIUTES THE RADI41L POINTSWEIGHTS AND
C ANGLES AT WHICH THE INTEG-kANO MUST BE EVALUATED.
c

C NP OFc-,RFF OF cAUSSIAN LA
c R RAN AL POINTS TO RE JSEO
C 7H ANC.F S TO BE USED
C W £WFIcHIS TC bE USED
c -NFIRST PREVFNTS CCOMPJTING G-L POINTS MORE THAN ONCE
c

IMPLICIT REAL48(A-H.O-d.)

RFAL$8 kC(24)hdOI24~)
cCCmMON /NFIRST/ NFIRST
DATA NP/24/
p I -ARCGS (-I .00)
PI N=PI /I?. DO/NJP
IF(NFIIZST..NF-.0OiLJ TO 99
CALL G1.0?4(fkO'jC.O.0..00,1D)
DO 10 I~leNP

10 TH(])=(I-.500OVPIN
NFIRST = 1

99 C ON T IN I I
N = NP
T a Hi2 - RI.
TW = TtiR2 + RI)
F = TW.-PI/NP
00 100 1=1.11P
RX = Rt

X=R X, R I
RY = A
RY = RY-,R2
RAI I D)SORT ( qX +FC(Ih(RY R- )
W(i) = WC(l)lF

100 C.DNT INUE
AFTURN
INO
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SURUTN -. 2 (*A~ D
S.- -.

CqR7?o7~826,cO (-,.47'3~718b~
c GR415'SSIA431O42133'FN3ERITFRTINROTNE424 P9IAN4uTS) 4
c OQ379)~2934;7o)O.34~itOOO7'

D~klL F74O124l1lN 8bD4$( 24).28(O 1L-,XX(9121t5AA( 12)51

* 94. 24 64 )250b 7.a2 7o%2&Qb5O't32Cl,2o-01. .274388193t7521.5b910
4 .OR4 5 5 004304(1144D--O),26)t4 53u8 4
.P A20 P '9.922159= 7o) 3l6 84 16353

2 44 At 47 1 j)'6(>. AA6 14 -09 044201 95 37
RFTU735j66,t,347O4ý1iiO 1555)85B2tG3

00~~ 225=.1



SU(,UQLT IN E A E,-SL (AGqFFFr3Z *NUM I

c. %jj-iq nlJT INF hF SSL COMPUTFS BESSE L FUN(.T! ONS OF ITHE
C. kFCFIV[O AukNj'*jTC.C'
C. Ar, 9~~~TCF W~SSFL FUNCTION
r. bf k1 ijP.,j Vt/LT().T C-F oESSZL FLJNCTICJNS
f. bi ?Fkf)Uk(j.Ck - iSSEI I-djr.TION'
C. NUM. HIGHIIFT (,kbfl. OF 1M`SSIL FUNCTION TO bE RETURNED
C. NY.NX - OkOFFRS CALCU(LAlb 6UbY ASYMPTOT IC EXPANSION

I MPt I(.I T RFAL* ' ' (A-H.n-Zj
f) IMFNS ICiN RF-3(I1001 *ETF ( 1)
N7=)J 00
KT tO

NY=IF IX( SNC~t IA)
I F(Nt L-E.1 1) 'AFzlt)
iTF(NY.* FU. ) NF-2
I &(NY ~.F-Q.3)iNY LT.(IN =6

I F(NY.t;E.4-&('r).N4Y LT.61) NF=6;LNY
1 ENY ~ .~.A I).Y .LT .29) WF= 5 -NY

IF(N'Y.t(F.1.AN'.NY.LT.t1O) NF=44 NY
1I F Y CIF . OA)NY. LT. 80) NF~I a2 M NY tFft2(Y

I .y ('Y~F .1 50. A--.-) :Y 4LT r330) NF I IX ( 1 .,4FLUAI ( NY))
IF ( ;Y t- E. 3301) ',FUI FIX(1. 25 F L I (NY) )

IFNY..I NF=

NFLA ~ /. Lm*II.CLA(~ri /f- N~~i-

R C M P(0. 00 00MG(M)

I CGNTIIN-U F'
C.

CC USEPLJ ~FCt SYMvP :AT IY C ) EN T XP ~. AN SX I
c+

00 2 Mz-NX.H
APLJ=M:(ýT126



4 C.ONT INUF
SUMx .0,F1/XBB2
DC, 76 1a29NY?2*
Stim- SU14d2.OO8F3(l)

76 CrNT INUF
c

tC COMPUTE NORMALIZING CONSTANT

SNORM z I.00/SUM

BF (I I nSIWRm.13P3 ( I

C OCO ORDER BESSEL FUNCT:ONS ARE 0DOf

87= (2.0DO4iF3(1)/X-BF3(2))6SN0RM
H FT URN
E~ND

1271
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SUiRPOUTINIF Tt-bLE(X 1 ATV,AIPV)
c
C. SU.RNGUTINF TABLF IS AN AUXILIARY ROUTINE FOR BESSL
c THAI COMPUTFS AIRY FUNCTIONS

IMPL~r.IT RFALý6 (A-Hnf--z)

rATA Al/1 .00 62BD,4O00 L360q4OO~
I .556 7?41i09 41 o'.000,. 5 5705fBOO 9 .ODOO. .5 55 45 010,4-- .. 000,
2 .551cIIC".LO*4' 0. 00 , .55 242 1DO v 4;-*. OD09. 559bOUO, 4V0. ODOt
3. 549584r, , 4- 0. (D00, . 5482 33 DO/4
OATA t- IP/ 4,0. U0, .5o~b73D .,, 0. 000, .56944f3UD 0~ O DO9

2.57~i719?7DO.4-'O.:'k)3..571:i2QDO,4ý-O.OL3, .58374635,4Pb0oOO
3 . 5R5?M.5 L.O. 4,- O.umO9. 58724t5QO/
00T AM)1)/4-*('. CO. .5482 3010..545636DO 9.5431I8:OvO

I .5408~4,t56. .5 4861 8D0. .53648900.. 5a4448DO 9. 532488D0,

D,4T,, A$iP/44'0.00OJ.5d7?45DO,.59112OOO,.5948Ž3DO,
1. 5911372 DO *.6L- hR 20 0, 6050680 0o. bOt239DO*, 6113O0OO ii

Lz I
I F(Y. GT .1.503) GO TO 14
TF(Y.GT,T0,4'499',900) GO TO I.
L=2,
Wi r 10.0.0 4 Y
iW1~lF1 X(SNr(L(Wl I

IF(WI.T.I2)IZZIZ+5

IF:(IYY.I0 210.40. 1

I Y =10.o00'
lYt-Jl-IX(SNGL(Y)

2 Iz[~
GO Tna

4 ATV=AI( TY
AIPV=AIP(IY)
G Q 10 P,

6 17=IY

a 0P=Y-FLCAT(IYI
I F (L. E 0.2 1 fOP = tP/DOO

AIPV I1..00 3P) A I ( I Y 1+3:A I I Z Z)
(jO TO 19

12 AIV ( l.(O0-5P)%AB56t193O+CP.Al( lZ)

F1'.AT ( V 41-00-3P EXCEOP( TY+.ABLE ( VALS)
eG'Tkn 1

14 p /,.n

Al V I D -C)P)J.56 1 28D + D- Z



SUARnuT INF SJMCK
C,
C SLJRROUT INE SUMCI( COMPUTES THF ANALYTILAL EXPRESSION
fC FOR THE INPINITE SUM CF COEFFICIENTS

c S ISOM = INF IN ITF SUM OF POINT TAPGLT (IAVE=l) 01-
C AVFRAGH) TAF.CFT (IAVF-O) CLEFFICIENTS
C BKeSLUM INFINIIF SUM. OF~ 84CKGRJUND C0tFFICIENTS
C.
C

hIMPLICIT RIFbL*8 (A-H.Cl-7.)
r.CMMiN /0)TPkM/ RH-O,SlCWI ,H,AL*BE*ERX#RYvXOYO

c.MOJ/Avp-s;/ qJUMoAvEqpo
COMMON /ANGL/ RANGL
WUWI
CONSTaO .250000
CAMA-DSQRT(SIGl I2+Pn%-2)
IEE IAVF r-0.0) GAMt=SI c,
0IV=?.00..DSoRT (2.n0)4-GAMA
IF(IAVE.EO.0) GO TO 10

C
c
C COMPUTE SUM CF AVERAGED COEFFICIENTS

I3=r.F;F((2 .)Oý iXpeRHO)-wJ/DIV)
C~ct'4?RF4(?.0U)0,IYO)+H)/D1VI

4 S I 'SU(M=C.CGs1 .4 A-) I (C-%-)

Ik2=R(H* BE.,S IG)
C
c C.(.MPJTF sum OF 3ACKGROUND COEFFICIENTS
C,

SK S UJz4. 001 #, E0R 1tR 2/(WH) 2
Pk'INl 5.VAKSLJM.SISUM
R FTLU FN

10CO~~J
C
C COMPUTF SUM GF POINT TARET COEFFICIENTS

GO 10 4
5 FGr,,.1AT(2X, RKSJ~.¶=*.OI5.8.10X,'SISUMlz',Di5.6)

F ND



C.

C. IMPLICIT kEAi*8 (A-H-.0-L)

ElcULJXP(Fl)
*F 2 z(Z;.,S I C; ) .-
E2 aD uX P I L 2

E3g1)FXP(F31 I

Yi I - .DO-D F PX I I

X3 aZ.I (;_u/ ( 2.C3 S I16)
Y 3 a I -D _ EkF (X31
X4:Z*S I G

RFk=,+( E2/ (2 .flO*Z4 493 1 ): E34-Y Z+E4-Y3-2.00'Y 10
RF TURN
ENr)

1.30
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